Naval Research Laboratory

Washington, DC 20375-5320

NRL/MR/5542--OS$
3

Security Ontology
for Annotating Resources

Anya KM
Jmm Luo
Myonc KanG

Center for High Assurance Computer Systems
Information Technology Division

August 31, 2005

20051005 047

Approved for public release; distribution is unlimited.

'REPORT DOCUMENTATION PAGE A S

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arfington, VA 22202-4302. Respondents should be awars that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
31-08-2005 Memorandum Report
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
Security Ontology for Annotating Resources

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) §d. PROJECT NUMBER

. . 5e. TASK NUMBER
Anya Kim, Jim Luo, and Myong Kang

5f. WORK UNIT NUMBER

55-8089-G5
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Naval Research Laboratory, Code 5542
4555 Overlook Avenue, SW
Washington, DC 20375-5320 NRL/MR/5542--05-8903
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S)
Office of Naval Research
Ralph Wachter, Code 311
800 North Quincy Street 11. SPONSOR / MONITOR’S REPORT
Arlington, VA 22217 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Annotation with security-related metadata enables discovery of resources that meet security requirements. This paper presents the NRL Secu-
rity Ontology, which complements existing ontologies in other domains that focus on annotation of functional aspects of resources. Types of
security information that could be described include mechanisms, protocols, objectives, algorithms, and credentials in various levels of detail and
specificity. The NRL Ontology is more comprehensive and better organized than existing security ontologies. It is capable of representing more
types of security statements and can be applied to any electronic resource. The class hierarchy of the ontology makes it both easy to use and
intuitive to extend. We applied this ontology to a Service Oriented Architecture to annotate security aspects of Web service descriptions and
queries. A refined matching algorithm was developed to perform requirement-capability matchmaking that takes into account not only the ontol-
ogy concepts, but also the properties of the concepts.

15. SUBJECT TERMS
Security; Ontology; Semantic Web

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Anya Kim
a. REPORT b. ABSTRACT c. THIS PAGE UL 54 19b. TELEPHONE NUMBER (include area
d
Unclassified Unclassified Unclassified %) 202) 767-6698

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Table of Contents

1. Introduction 1
2, Existing Security-related Ontologies 2
3. NRL Security Ontology 4
3.1. Domain and Scope Of the ORIOIOZYccccouecuenuiiieieiiieneaeeenis ettt reteie e sseb et e eesesaenesseeesa e seens 4
3.2. Organizational Structure of NRL Security ORIOIOYccccovciiiirrieriiiieiicreinitrerest et 5
3.3 Design ObJectives REVISIIEU.cc.c.coceiiciriiiiiiiieeinine ettt nesae e 11

4. Application of NRL Security Ontology to the Service Oriented Architecture 11
4.1 Reasoning and Matching AIOFITRAM.............c.cc.cccooviiiirieniriieniiit et se et ee e eiens 12
Perfect MatCh CASESueeriiiiviiiiiiiiii ittt ese e s st sbaesre e abe sonesbe s neshr e e e nees 13
C10SE MALCH CASESeeeuciniriieniieii ittt sttt s e sr e bt aesb et e st et et et e e e bt s et e st s aneseseteatene 13
PosSible MatCh CASESoovuiriiiiiiiiiiii ittt et s e st s s 14

INO MALCH CASES ...vveurerurerieiesiererieses sttt et s esabt et rore s bt saeesaesreseresaee saarsnesetemnensessaeshesneensesnnessacsnensens 14

4.2 Application of the Matching AIGOFIIAMcccoueiimiriiierceneerier et stieoaeene s ies s esnesaeeene 15

5. Conclusion and Future Work 17
References 18
APPENDIX A. Ontology vs. Taxonomy for Security Annotations 20
APPENDIX B. Competency Questions for the Ontology 23
APPENDIX C. Graphical Representation of Security Ontologies 25
APPENDIX D. OWL Representations of the NRL Security Ontology 31

iii

Security Ontology for Annotating Resources

Anya Kim, Jim Luo, and Myong Kang

Center for High Assurance Computer Systems
Naval Research Laboratory
Washington, DC 20375
{kim, luo, mkang}@itd.nrl.navy.mil

Abstract

Annotation with security-related metadata enables discovery of resources that meet security
requirements. This paper presents the NRL Security Ontology, which complements existing
ontologies in other domains that focus on annotation of functional aspects of resources. Types
of security information that could be described include mechanisms, protocols, objectives,
algorithms, and credentials in various levels of detail and specificity. The NRL Security
Ontology is more comprehensive and better organized than existing security ontologies. It is
capable of representing more types of security statements and can be applied to any electronic
resource. The class hierarchy of the ontology makes it both easy to use and intuitive to
extend. We applied this ontology to a Service Oriented Architecture to annotate security
aspects of Web service descriptions and queries. A refined matching algorithm was developed
to perform requirement-capability matchmaking that takes into account not only the ontology
concepts, but also the properties of the concepts.

1. Introduction

In today’s network-centric military environment, automatic discovery of resources and the
ability to share information and services across different domains are important capabilities
[7]. The first step in providing these capabilities is to markup these resources with various
metadata in a well-understood and consistent manner. Such annotation will enable resources
to be machine-readable and machine-understandable.

Using metadata to find distributed resources that meet one’s functional requirements is only
the first step. Resource requestors may have additional requirements such as security,
survivability, or quality of service (QoS) specifications. For example, they may require
resources to possess a certain military classification level, to originate from trusted sources, or
to be handled according to a specified privacy policy. Therefore, resources need to be
sufficiently annotated with security-related metadata so that they can be correctly discovered,
compared, and invoked according to security as well as functional requirements of the
requestor.

In this paper, we introduce a set of security-related ontologies collectively referred to as the
NRL Security Ontology. The NRL Security Ontology provides the ability for precisely

Manuscript approved June 13, 2005.

describing security concepts at various levels of detail. This ontology complements existing
ontologies that mainly focus on functional aspects of capability, content, and parameters.

Marking up security aspects of resources is a crucial step toward deploying a secure Service
Oriented Architecture (SOA) system.

Other groups have recognized the need for security annotation of services and proposed a set
of security-related ontologies [2-4]. However, these ontologies lack the ability to express
certain security concepts, contain unnecessary concepts, and are organized in a non-intuitive
way. The NRL Security Ontology was created to address these limitations. We expect this
work to serve as a catalyst in the development of standardized security-related ontologies with
contributions from both the security community and the semantic Web community.

The rest of the paper is organized as follows. Section 2 examines previous work in security
ontology and discusses the need for improvements. Section 3 presents the NRL security
ontology, including design objectives, domain and scope, and detailed descriptions. Section 4
gives examples of how to use these ontologies to annotate and query for resources particularly
in a Web service context. It also discusses our algorithm for matchmaking between queries
and resource descriptions. Section 5 presents future work and our conclusion.

2. Existing Security-related Ontologies

Realization of the need for security ontologies is not new. Denker et al. have created several
ontologies for specifying security-related information in Web services [2] using Daml+OIL
[5] and later OWL [6]. We refer to this set of ontologies as the DAML Security Ontology for
the rest of the paper. The authors state that the goal of these ontologies is to enable high-level
markup of Web resources, services, and agents, while providing a layer of abstraction on top

of various Web service security standards such as XML-Enc [7], XML-Dsig [8], and SAML
(Security Assertion Markup Language) [9].

Of the set of ontologies that make up the DAML security ontology, the two main ontologies
are the Security Mechanisms ontology and the Credential ontology. They describe security
mechanisms and authentication credentials respectively. While we realize that these
ontologies are works-in-progress, we found two issues with them. First, they are not intuitive
to understand especially in terms of the organization of subclass relationships. Second, they
cannot express all the security information that we want to describe.

The intuitiveness issue is particularly true for the main Security Mechanisms ontology. Figure
1 depicts this ontology in a simplified form where circles denote classes, solid lines represent
instances of the classes and dotted lines represent properties'. The top class in this ontology is
‘SecurityMechanism’ with subclasses of ‘SecurityNotation’, ‘Signature’, ‘Protocol’,
‘KeyFormat’, ‘Encryption’, and ‘Syntax’. Making these unrelated concepts sibling classes
does not make sense from either a security perspective or an ontology perspective.
Furthermore, some instances are not properly assigned to the correct subclass. For example,
Kerberos and SSH are both declared as instances of ‘KeyProtocol’, however these are not key
protocols. Additionally, all properties are defined for the top class. However, those properties

! Some complex concepts they use such as restriction classes are not depicted here.

do not apply to most of the subclasses. For example, no instance under the ‘Syntax’ subclass
would have a need for the relSecNotation (Relative Security Notation), enc (Encryption), sig
(Signature), or reqCredential (Required Credential) properties, yet they are all inherited
because these properties are defined at the top class.

—documentation (range:&Bibtex_entry)

§—syntax (range: Syntax)

,(f’.r.??.eﬁiﬁ?.E—reISecNotation (range: SecurityNotation)
: - ;_enc (range: Encryption)

Security i .

ochanis —sig (range: Signature)

—reqCredentials (&ComposedCredential)

SecurityNotation

—Authentication XML_DigSig ASCI]
—Authorization iaSi X.509 XML_En
i OPENPGP_DigSig SAML DAMLOIL—
—AccessControl OPENPGP_En
Datal SMIME_E oWl
—Datalntegrit _Enc—
o DER—
—Confidentiality
Bri XML—]
—Privac
y Binary—{
—ExposureControl
A Radix-64_ASCIl—
—Anonymit
ymy ASN.1—
—Negotiation MIME
L_Policy eyRegistration eylnformation
. Protocol Protocol
—PolicyLanguage
X_KRSS X_KISS

KeyDistribution

Figure 1: Simplified DAML Security Mechanisms Ontology

The second issue we mentioned is the lack of expressiveness. The DAML security ontology
includes many classes and instances that are not directly relevant for security annotation while
lacking others that are necessary. For example, syntax and data transfer protocols are useful
concepts in another domain, but are not particularly relevant for describing security-related
information. Furthermore, the only encryption instances defined in the ontology are S/MIME,
OpenPGP, and XML encryption. We do realize that more instances could be added as the
need arises. However, the organization of the class hierarchy should be well developed. For
example, there should be classes to represent military as well as commercial security devices
and security policies. Currently, there is no appropriate place in the DAML Security Ontology
to create a firewall or military security policy instance. There is also a lack of appropriately
placed properties that could allow for more detailed refinement of security concepts. For
example, it would be useful to define the algorithms supported by a protocol, or the
certification status of a mechanism.

Althoﬁgh the authors of the DAML Security Ontology did a great job in recognizing the need
for security ontologies and beginning work in security ontologies, we feel that there is still
room for improvement. The next section describes the NRL Security Ontology in detail.

3. NRL Security Ontology

The DAML Security Ontology focuses on annotation of Web services rather than resources in

general. This is evident not only from their documentation [2], but also by examining the

types of classes and instances in the ontology. We want ontologies that can be used to

annotate generic resources from simple documents to interactive services with security-related

metadata. We also want to improve upon the limitations of the DAML Security Ontology

outlined in the previous section. The NRL Security Ontology was designed with the following

objectives in mind:

1. Describe security related information applicable to all types of resources

2. Provide the ability to annotate security related information in various levels of detail
for various environments (both commercial and military)

Create ontologies that are easy to extend and provide reusability

Facilitate mapping of higher level (mission-level) security requirements to lower-level
(resource level) capabilities

3.
4.

3.1. Domain and Scope of the Ontology

When creating an ontology, one of the most important factors is the domain and scope in
which it will be used [10]. While our objectives outlined above are a good starting point, in

order to create ontologies that will be truly useful, we need to understand the types of
questions that the ontology will be expected to answer.

These ontologies will be used by both the resource provider and the requestor to express their
security requirements and capabilities. We must consider the various ways that the same
statement can be expressed. Furthermore, we need to consider statements that are unlikely in

order to limit the scope of the ontology. Statements that are either too broad or too specific
are unlikely to be used and provide no useful information.

Noy et al. [10] state that one of the best ways to determine the scope of the ontology is to list
a set of competency questions that can be answered using the ontology. For our purposes we
did the same by composing a list of security requirements and capabilities for both the
resource requestor and the provider. From the requestor’s perspective, security requirements
can be stated in terms of specific mechanisms or in terms of abstract security objectives. From
the resource provider’s perspective, security requirements are similar to the notion of policy
and can express concepts such as authentication and access control. The provider’s
capabilities include protocols and mechanisms that the provider possesses and security

policies it adheres to. The actual list of the requirements and capabilities statements we
created can be found in Appendix B.

3.2. Organizational Structure of NRL Security Ontology

We chose OWL to create our ontologies because it provides a rich vocabulary for describing
classes and properties [6, 11]. It is widely used in many communities that have begun to
develop ontologies of their own knowledge domains [12].

There are seven separate ontologies that make up the NRL Security Ontology:

1. Main Security ontology: an ontology to describe security concepts

2. Credentials ontology: an ontology to specify authentication credentials

3. Security Algorithms ontology: an ontology to describe various security algorithms

4. Security Assurance ontology: an ontology to specify different assurance standards

5. Service Security ontology: an ontology to facilitate security annotation of semantic
Web services
Agent Security ontology: an ontology to enable querying of security information
Information Object ontology: an ontology to describe security of input and output
parameters of Web services

N

The Service Security, Agent Security, and Information Object ontologies are modifications
and extensions of some existing DAML Security ontologies while the others are new. The
Credentials, Security Algorithms, and Security Assurance ontologies provide values for
properties defined for concepts in the Main Security ontology. They enable those concepts to
be described in more detail with respect to types of credentials used, supported algorithms,
and associated levels of assurance. The Service Security ontology provides the means to use
security concepts from the Main Security ontology in the Web services framework. The
Agent Service ontology enables creation of security-related queries using security concepts
from the Main Security ontology. The Information Object ontology allows for annotation of
Web service inputs and outputs using the Security Algorithm ontology. The relationship
among these ontologies is represented in Figure 2. The ontology depicted in gray represents
OWL-S, a set of core ontologies used to describe Web services.

(@ | owL-s (2 D,
Service | Ontology Information
Security T Object
Ontology Ontology
Link to OWL-S Link to OWL-S
Ontology by Ontology by
(Y subclass) (3 subclass J
a D) 5 3
Agent ' Property to specify security ,
Securit 1 concepts as requirements .
Ontol : v and capabilities Propeﬁy to spemfy '
nology .. S 1) security algorithms
S '
~ -~ - r
:‘:}Z}”y‘:‘nz)r _ ~~<._ | Main Security a———--)
G Property to specify ~~4 Ontology Secur_lty
= ~ security concepts as D T TR E Algorithms
requirements and Property to specify Ontology
capabilities security algorithm
c ," > g &] J
Property to specify ,-* s Property to specify .
type of credential’ L7 *, assurance level //
2 N . Property to specify
(- (,
a D) Q) ,~ assurance level
Credentials Security !
Ontology Assurance |’
Ontology
a _ G)

Figure 2. Graphical Representation of Security-Related Ontologies and Their Relationships

Next, we present a brief explanation of classes, properties and relationships in each ontology.

A complete graphical depiction of these ontologies can be found in Appendix C and the OWL
files for each ontology in Appendix D.

Main Security Ontology (securityMain.owl)

The core ontology in the NRL security ontology set is the Main Security ontology (Figure 3).
It imports the Credentials ontology, Security Algorithms ontology, and Security Assurance
ontology as object properties. The top class, ‘SecurityConcept’ possesses three subclasses:
‘SecurityProtocol’, ‘SecurityMechanism’ and ‘SecurityPolicy’.

While some may argue that the distinction between security protocols and security
mechanisms is blurred, we define security protocols as an agreed upon series of steps to
accomplish a task while security mechanisms are implementations of protocols [13]. We

specifically differentiate them here to provide the ability to describe security in both manners.
Security policies are the set of rules that regulate how information is protected and secured .

The Main Security ontology also has a separate class called ‘SecurityObjective’ that enables
users to specify security objectives for the ‘SecurityConcept’ class using the
supportsSecurityObjective property. For example, IPSec is declared to have Confidentiality,
MessageAuthentication, and TrafficHiding as its supportsSecurityObjective property values.
Security objectives also enable users to search for protocols, mechanisms, or policies based on
the security objective they require. For example, users can query, “find all instances that
provide confidentiality” and receive a list of all the security concepts that have a value of
Confidentiality in their supportsSecurityObjective property.

Another way we can use ‘SecurityObjective’ is to map high-level mission requirements to
low-level service requirements. For instance, assume that a security requirement is specified
at the mission level such that Mission 1 and Mission 2 must have separation between them. At
this level, the mission planner can use the ontology to specify the security objective of
Separation. The mission designer can then search for instances in the ‘SecurityConcept’ class
provide Separation. In this case, the only one that does is VPN, so he can select VPN as a
security requirement at the service level.

i— supportsSecurityObjective
Range:SecurityObjective class (multiple)

SecurityObjective SecurityConcept

Restriction Class
{supportsSecurityObjective
- Confidentiality = "Buthortzation’}
- Availability ;
L UserAuthentication SecurityProtocol @E@ SecurityPolicy
I MessageAuthentication i hasAssurance P |
- Authorization ! Range: &SecurityAssurance; hasAssurance
. H it ’ Range: &SecurityAssurance; RBAC
- Messagelntegrity { Assurance Assurance
- KeyManagement i hasAlgorithm
Y 9 i Range: &SecurityAlgorithms;
- Trust i Algorithm
- HostTrust — reqCredential
L ReplayPrevention Range: &Credentials;SimpleCredential
- CovertChannelPrevention
[~ Separation —
% TrafficHiding ServiceMechanis| Zzg(;txf CommercialPolicy(MilitaryPolicy,
~ Anonymity
SoapFirewall ClarkWilson BLP

MLSPump

. ChineseWall
OnionRouter

Figure 3: A Part of the Main Security Ontology

Credentials Ontology (credentials.owl)

Authentication is one of the most fundamental security requirements in a networked
environment. The Credentials ontology allows for specification of credentials used for
authentication purposes. Concepts in the Security Main ontology can refer to a specific

credential through their reqCredential property. While we adopted some of the notations in
the DAML Credential ontology, we found that the organization of various credentials in the
DAML Credential ontology was not intuitive and some of the classes were unnecessary. We
improved upon their Credential ontology by reorganizing classes to be more intuitive,
including more properties and adding more classes to define additional types of credentials.

Our Credentials ontology categorizes credentials into physical token, electronic token, and
biometric token.

Under the ‘PhysicalToken’ class, we kept many of the classes from the DAML Credential
ontology under their ‘IDCard’ class. In addition, we created a class to describe military IDs
and an instance to represent CAC (Common Access Card) cards used in the military. The
ontology can be extended to add properties such as issuing agency, expiration date, issue date,
etc. Under the ‘ElectronicToken’ class, we provide subclasses that enable authentication
based on host address, certificates, passwords, and cryptographic keys to name a few.
Additional properties were added to describe certificates including the issuer, version and
serial number under the Certificate class. In order to support role-based (RBAC) certificates
[14], an ‘RBACCertificate’ class was created as a subclass of the Certificate class with a role
property. The ‘BiometricToken’ class represents credentials that pertain to human traits. For
now, only ‘Voice’ and ‘Fingerprint’ subclasses are defined here.

In addition to the three categories of simple credentials, the ‘MultifactorCredential” class can
be used to describe composed credentials made up of two or more individual credentials. For

example, it can describe requirements where both a smart card as well as a password is
needed.

Security Algorithms Ontology (securityAlgorithms.owl)

The Security Algorithms ontology was created to enable description of various security
algorithms (Figure 4). It can be used to describe not only a list of algorithms that a given
security protocol can support, but also to specify what algorithm was used to encrypt or sign
given data objects as inputs or outputs of a Web service. It classifies these algorithms broadly
into encryption, signature, key exchange, and checksum algorithms. It provides a means to
describe whether or not a given algorithm is a government standard through the
isNISTStandard property. It can also describe whether an encryption algorithm is military

Typel, Type 2, Type 3, or Type 4 [15] through the hasNSALevel property. Additional
properties enable description of key lengths and modes of operation.

— isNISTStandard

Algorithm

EncryptionAlgorithm

KeyExchangeAlgorithm

Oakley
Diffie_Hellman
KEA

ChecksumAlgorithm

CRC-8
CRC-16
CRC-32

SignatureAlgorithm

hasNSALevel —
modeofOperation —
keyLength —

AsymmetricAlgorithm

SymmetricAlgorithm

ACAlgorith

- DES (keylength = 64) HMAC

RSA SHA-1
L - CBC-MAC
AES Ece SHA-256
MD4
I TripleDES (hasNSALevel = &assurance;type3) MD5

~ CAST

- Skipjack (hasNSALevel = &assurance;type2)
— CRAYON (hasNSALeve! = &assurance;typeT)

Figure 4: Security Algorithms Ontology
Security Assurance Ontology (securityAssurance.owl)

The Security Assurance ontology provides a way to describe standardized assurance methods
for security protocols, mechanisms, and algorithms. They can be described in terms of their
assurance level using the hasAssurance property from the Main Security ontology. The
‘Assurance’ class is classified according to different assurance methods: ‘Standard’,
‘Accreditation’, ‘Evaluation’, and ‘Certification’. This ontology is the least compete of all our
ontologies. However, we have added classes to describe the Common Criteria and TCSEC
evaluations, and the FIPS and NSA standards [15].

Service Security and Agent Security Ontologies
(serviceSecurity.owl and agentSecurity.owl)

OWL-S [16] is an OWL-based semantic markup description language that provides a core set
of constructs for describing Web services specifically. It provides a set of ontologies called
Profile, Process, and Grounding to describe Web services. The Profile describes services in
terms of what the service does, the Process describes how to use it, and the Grounding
specifies how to interact with it.

In order for the NRL Security Ontology to be used in the Web service context, a link must be
made to the OWL-S ontologies. The Service Security ontology was developed for such a

purpose. In the Service Security Ontology, ‘SecurityConcept’ and ‘SecurityObjective’ from
the Main Security ontology are defined to be subclasses of the ‘ServiceParameter’ class in the
OWL-S Profile ontology (Figure 5). The OWL-S Profile also contains a serviceParameter
property that can have ServiceParameter as its value®. Declaring two subproperties of the
serviceParameter property, securityRequirement and securityCapability enables the OWL-S
Profile to include security requirements and security capabilities in its service description.
Furthermore, we defined the range for these subproperties as either the ‘SecurityConcept’ or
‘SecurityObjective’ classes. This allows security requirements and capabilities to be stated in
terms of either a particular security objective, or a specific security mechanism.

— serviceParameter (range: ServiceParameter)
.

- securityRequirement (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)
— securityCapabllity (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

&profile;Profile

&profile:Sewi@

&SecurityMain;SecurityConcep SecurityMain; SecurityObjective

Figure 5: Service Security Ontology

The Agent Security ontology allows for querying of resources, in particular Web services
with requestor requirements and capabilities. It defines an ‘Agent’ class to represent the

service requestor with the properties securityCapability and securityRequirement that can
hold values from the ‘SecurityConcept’ and ‘SecurityObjective’ classes.

Information Object Ontology (InfObj.owl)

The Information Object ontology is based on a DAML ontology created to capture encrypted
or signed input/output data of Web services. It has an ‘InfObj’ class and two subclasses,
‘EncInfObj’ (Encrypted Information Object) and ‘SigInfObj’ (Signed Information Object).
The ‘InfObj’ class is used as the range for input and output parameters of services described
with OWL-S. The ontology has the cryptoAlgUsed property to specify the algorithm used to
encrypt or sign the object. In the original DAML ontology, the cryptoAlgUsed property
pointed to a set of algorithms defined within the DAML Information Object ontology.
However, we felt that the two concepts of information object and security algorithms were so
dissimilar that they did not belong within the same ontology file. Hence, in the NRL

Information Object ontology, the cryptoAlgUsed property points to classes in the Security
Algorithms ontology.

2 Note that the OWL-S Profile ontology has a property and class of the same name, service parameter. However,
the property starts with a lowercase letter, while the class starts with an uppercase letter. Thus, serviceParameter
refers to a property while ServiceParameter refers to a class.

10

3.3. Design Objectives Revisited

At the beginning of Section 3 we outlined a set of objectives expected to be achieved by the
NRL Security Ontology. This subsection discusses whether those design objectives were met
and to what degree.

L.

Describe security related information not only for Web services, but for all types
of resources: The NRL Security Ontology enables us to describe security information
of various types of resources. We can describe security protocols that are specific to
Web services such as XML-enc and SAML, but also include many protocols and
mechanisms such as IPSec, Kerberos and SSH that are generally applied to any
resource.

Provide the ability to annotate security related information in various levels of
detail for various environments: The ontology can provide specific details of
security mechanisms through properties such as the types of algorithms supported,
required key length, types of credentials used, and expiration dates. Classes and
instances were created that enable description of resources relevant to a military
environment as well as for commercial use.

Create ontologies that are easy to extend and provide reusability: The ontologies
are created with a class hierarchy that makes sense from a security perspective. New
instances when necessary can be added to the ontology in an intuitive manner with out
having to alter the class hierarchy. Also, we limited the creation of unnecessary
ontologies by reusing several of the ones given in the DAML ontology by extending
and modifying them. When we had to create new ontologies, we justified our reasons
by stating why the new ontology was more suitable.

Facilitate mapping of higher level (mission-level) security requirements to lower-
level (resource level) capabilities using the ontology: resources can be described in
terms of either security objectives at the abstract level, or security concepts at the
concrete level. A mapping was established so that moving between the two methods of
specification is possible.

In the next section, we will provide some examples of how to apply these ontologies to
annotate resources with security information.

4. Application of NRL Security Ontology to the Service
Oriented Architecture

While the NRL Security Ontology can be used to describe security-related information of
resources in general, in this section we discuss how to annotate Web services in a Service
Oriented Architecture. In particular, we focus on:

How to annotate Web service descriptions with security requirements and capabilities
How to create queries for finding Web services with given security requirements and
capabilities

How to perform matchmaking between queries and service descriptions in the SOA
context.

11

4.1. Reasoning and Matching Algorithm

We have stated that both resource requestors and providers have security requirements and
capabilities. Matchmaking looks for a two-way correspondence between these requirements
and capabilities. In other words, service requirements are compared to requestor capabilities
and service capabilities are compared to requestor requirements. In order for a match of
security concepts to occur between a service provider and a service requestor, two conditions
should be met. First, the provider’s security capabilities should satisfy the requestor’s security
requirements. Second, the provider's security requirements should be satisfied by the

requestor’s security capabilities. This implies that the requirements should subsume the
capabilities (Table 1).

Table 1. The Matching Relationship between Requestor and Provider Requirements and Capabilities

Requestor Provider
Requirements c Capabilities
Capabilities - Requirements

Every single requestor requirement must have a corresponding capability on the provider side
to satisfy it, and vice versa. Hence the matchmaker must be able to perform two tasks. First, it
must be able to determine the level of match for each specific requirement and a specific
capability. Second, it must use those levels of match to determine if the set of requirements is
matched by the set of capabilities. In other words, the matchmaker must determine the level at
which each requirement is matched to a capability, and then the overall level of match
between the requester and the provider. This will be explained in detail later in the section.

Several semantic matching algorithms have been proposed [2, 17, 18]. Two of these [17, 18]
support only one-way matching of functional service descriptions to requestor queries as
opposed to requirement-capability matching. They do not need to consider two-way matching
since their focus is on matching functional aspects; when discussing purely functional
requirements there is no functional requirement from the provider-side and no functional
capabilities on the requestor-side. The third proposed matchmaking algorithm [2] performs
requirement-capability matching for both sides. However, it does not take into account
property attributes. Consequently, it will not support cases where both the requirement and
capability point to the same concept but the concepts are annotated with different properties.
For example, the requestor and provider may both use SSH (stated as a requirement on one
side and a capability on the other), but if the requestor requires SSH using TripleDES and the
provider is only capable of SSH with AES then these two should not match. Our matchmaker
will perform requirement-capability matching, taking into account property annotations.

Specifically, when describing security information of resources, the ability to include
properties in the matching algorithm is very important. This is due to the fact that security
information, more so than functionality-related information can require detailed descriptions
that make extensive use of properties. Complex statements can be made with multiple layers
of properties. For example, there could be a security requirement that requires the use of
XML-enc (securityRequirement property) with a symmetric encryption algorithm

12

(hasAigorithm property) that has been declared a type 3 algorithm from the NSA
(hasNSALevel property).

For the first task of the matchmaker, there are four possible levels of match for each
requirement-capability pair: perfect match, close match, possible match, and no match in
decreasing order of matching.

Perfect Match cases

Perfect matches occur when both one’s capability and the other’s requirement point to the
same concept. The same concept can mean the exact same concept, or two concepts declared
as equivalent in the ontology. There are two ways this can occur:

e Case 1. Both the requirement and capability specify the exact same ontology concept. The
instances and property values specified by both sides are identical. This is the trivial case.
For example, if a requestor query states that it requires the service to possess a VPN
(Virtual Private Network) that possesses a Common Criteria EALA rating and a service
describes its capability as possessing a VPN with a Common Criteria rating of EAL 4 then
these two are a perfect match.

e (Case 2. The requirement and capability refer to equivalent concepts, and if properties are
specified, the properties are identical or equivalent. For example, a requestor’s
requirement specifies SSL and the provider’s capability is listed as TLS. In the Main
Security ontology, these two concepts are listed as equivalent classes; hence they are
identical and will produce a perfect match. We sometimes call this an equivalence match
to differentiate from the first case.

Close Match cases

A close match occurs when one’s requirement is more general (i.e., described in less detail)

than the other’s capability. There are three ways this can occur:

e Case 1. The requirement specifies a more general concept at a higher level in the
ontological hierarchy. For example, the requestor’s capability is stated as DES while the
provider’s requirement asks for a symmetric encryption algorithm. DES is an instance of
the ‘SymmetricAlgorithm’ class and thus lower in the hierarchy. We assume that the
provider specified its requirement as a higher level concept because it does not care which
specific algorithm is used as long as it is a symmetric encryption algorithm. Therefore, we
can assume a match.

e Case 2. The requirement and capability have the same concept, but the capability is
specified in more detail (i.e., property). For example, the requestor’s capability is
specified as AES with 256 bit keys while the provider’s requirement asks for AES (with
no properties). AES with 256 bit keys is a more specific instance of AES so we can
assume that there is a match.

e Case 3. The requirement is stated in terms of a security objective while the capability is
stated in terms of a security concept that supports that specific objective. For example, the
requestor’s requirement is stated as the objective of Confidentiality and the provider’s
capability is given as XML-Enc which has the supportsSecurityObjective value of
Confidentiality. Since the requirement is looking for anything that supports
Confidentiality and XML-Enc does support it, we view this as a match.

13

Possible Match cases

A possible match occurs when one’s requirement is more specific (i.e., defined in more detail)
than the other’s capability. This is the opposite of a close match. A possible match does not
rule out the possibility of a match, but the information available cannot ensure the capability
can match the requirement. There are three ways this can occur:
e (Case 1. The requirement specifies a more specific concept (lower in the hierarchy). For
example, the requestor’s capability is stated as symmetric encryption algorithm while the
provider’s requirement asks for DES. The symmetric encryption algorithm that the
requestor is capable of could be DES, but it is not certain. Therefore, it is only a partial
match.
Case 2. The requirement and capability refer to the same concept, but the requirement
specifies a more refined concept (i.e. property). For example, the capability is stated as
AES while the requirement asks for AES with 256-bit keys. The AES specified in the
capability could be possible of 256-bit key encryption, but it is not certain. Therefore, it is
only a partial match.
Case 3. The requirement is stated in terms of a security concept while the capability is
stated in terms of a security objective that is supported by the security concept. For
example, the requestor’s requirement is stated as confidentiality while the provider’s
capability is stated as XML-Enc which supports confidentiality. The requestor may be

capable of using XML-Enc, but it is not certain. All we can deduce is that the requestor is
capable of confidentiality. Therefore, it is only a partial match.

No Match cases

No match occurs when one’s capability and the other’s requirement are disparate without the

possibility of matching. There are two ways this can occur:

e Case 1. The requirement and capability point to two unrelated concepts. For example, the
requirement states it requires DES and the capability states its capability as RSA. These

concepts have no hierarchical relationship to each other and so are unrelated. There can be

no match.

Case 2. The requirement and capability point to the same concept but have different

specifics (i.e. properties) with respect to that concept. For example, the requirement points

to AES in CBC mode while the capability states AES in CFB mode. The capability and

requirement can both use AES, but they require modes of operation; one is a block cipher
the other is a stream cipher so they are not compatible.

For the second task of the matchmaker, it must attempt to match every requirement on one
side against every capability on the other side. The degree of match for a single requirement
is its highest level of match it has against all of the possible capabilities. The overall level of
match between the requester and the provider is the same as the lowest degree of match of any
of the requirement-capability pairs. There are four possibilities:

* If at least one of the requirements is not matched, then the requestor is not matched to
the provider. The requestor will not be able to use the resource.

If all the requirement-capability pairs are at least possible matches, then there is a
possible match between the requester and the provider. This means there is not enough
information to determine one way or the other whether the requester can use the

14

resource. Additional information or negotiation will be needed to make that

determination.

. If all the requirement-capability pairs are at least close matches, then the requestor can
indeed use the resource.

o If all the requirement-capability pairs are perfect matches, then obviously the

requestor can use the resource.

In the following section, we will provide an example of the matching process between a
service description and a query.

4.2. Application of the Matching Algorithm

In this section we examine how to actually describe services and create queries using the
security ontologies, and how to find services using the matching algorithm. In our example,
we have a service requestor looking for a book selling service. The service requestor would
create queries to find services that match not only the desired functionality, but also the
security capabilities and requirements of the requestor.

The following is an example of the requestor’s security capabilities and requirements along
with the part of their query that pertains to the security capability and requirements:

Requestor’s Security Capabilities

1. Authentication via SAML with an X.509 Certificate signed by VeriSign
Requestor’s Security Requirements

1. Authorization

2. SSH with the DES algorithm in CBC mode

<credential:X.509Certificate rdf:ID="X.509">

<credential:issuer rdf:resource=“VeriSign”/>
</credential:X.509Certificate>
<securityMain:SAML rdf:ID="Capabilityl">

<securityMain:regCredentials rdf:resource="&credential;X.509"/>
</securityMain: SAML>

<securityMain:Authorization rdf:ID="Requirementl”/>

<securityAlgorithms:DES rdf:ID= “Algl”>
<gecurityAlgorithms:modesOfOperation rdf:resource=“CBC”/>

</securityAlgorithms:DES>

<securityMain:SSH rdf:ID="Requirement2">
<gecurityMain:hasEncryptionAlgorithm
rdf:resource="&securityAlgorithms;Algl"/>

</securityMain:SSH>

<agent :Agent rdf:about="#BookRequest”>
<gecurityCapability rdf:resource="#Capabilityl”/>
<securityRequirement rdf:resource="#Requirementl”/>
<gsecurityRequirement rdf:resource="#Requirement2”/>
</agent>

15

On the other hand, a book selling service would create an OWL-S profile that includes its
functional capabilities, as well as security requirements and capabilities. The following is the
example security capability and requirement statements of the book selling service
(BookSeller), along with the part of its OWL-Profile that would contain these statements.

BookSeller’s Security Capabilities

1. SOAP Firewall with a Common Criteria level of EAL4
2. SSH with DES

BookSeller’s Security Requirements
1. Authenticate via SAML with an X.509 Certificate

<securityMain:SOAPFirewall rdf:ID="Capabilityl”>

<securityMain:hasAssurance rdf:resource="&assurance;EAL4" />
</securityMain:SOAPFirewall>

<gecurityMain:SSH rdf:ID="Capability2">
<securityMain:hasEncryptionAlgorithm

_ rdf:resource="&securityAlgorithms;DES"/>
</securityMain:SSH>

<credential:X.509Certificate rdf:ID="X.509"/>
<securityMain:SAML rdf:ID="Requirementl">

<securityMain:reqCredentials rdf:resource="&credential;X.509"/>
</securityMain:SAML>

<profile:Profile rdf:about="#BookSellerl”>
<profile:serviceName>Book Seller l</profile:serviceName>

<profile:textDescription>This service sells all types of books
</profile:textDescription>

<gsecurityCapability rdf:resource="#Capabilityl”/>
<gecurityCapability rdf:resource="#Capability2”/>

<gsecurityRequirement rdf:resource="#Requirementl”/>
</profile:Profile>

Given this service description and the above query, the matching algorithm would match the
requestor’s capabilities to the provider’s requirements and the requestor’s requirements to the
provider’s capabilities in the following manner (Tables 2 and 3):

Table 2. Matching Requestor’s Capabilities to Provider’s Requirements

Requestor’s Security Capability | Provider’s Security Requirement | Match Level
Authentication via SAML with an | Authentication via SAML with an | Close Match
X.509 Certificate signed by | X.509 Certificate
VeriSign

Table 3. Matching Requestor’s Requirements to Provider’s Capabilities

Requestor’s Security Requirement | Provider’s SecurityCapability Match Level

Authorization SOAP Firewall with Common | Close Match
Criteria level EAL4

SSH with DES algorithm in CBC | SSH with DES algorithm Possible Match

mode

16

e In Table 2, the requestor’s capability and the provider’s requirement possess the same
concepts, but the capability has more detail. This is Case 2 of the close match situation.

e In the first row of Table 3, the requestor’s requirement was that a service provides
Authorization. While the security objective of authorization is not explicitly stated in the
OWL-S Profile of the provider, the reasoner was able to deduce that the SOAP Firewall
supports authorization since it has a value of Authorization in its
supportsSecurityObjective property. This is Case 3 of the close match situation.

¢ In the second row of Table 3, the requestor has a more detailed requirement regarding
SSH than the provider has specified as its capability. This is Case 2 of the possible match
situation. This could mean that either the provider cannot support the CBC mode of DES
or it can support DES in CBC mode but decided not to provide this additional detail.

Since the lowest level of match in the three sets of requirement-capability pairs is possible
match, the matchmaker will declare the service to be a possible match. The requester is not
certain whether it can use the service. It must obtain additional information or negotiate with
the provider to make that decision.

5. Conclusion and Future Work

Annotating resources with metadata enables them to be machine-understandable and
facilitates automatic discovery and invocation. Most work in the area thus far has focused on
annotation of resources in terms of functionality. However, security is an important issue
especially in a network-centric environment. Most resources on the network are protected by
some sort of security mechanisms. Satisfying functional requirements alone may not
guarantee access to desired resources. As a result, annotation of resources in terms of security
is just as important as annotation in terms of functionality.

In this paper, we presented the NRL Security Ontology for making security annotations. It is
much more comprehensive than security ontologies previously available in terms of the
number of concepts, the properties of the concepts, and the type of resources that can be
described. Its organization is also more intuitive so that it is easier to use as well as to extend.
New properties and instances can be added without modifying the overall class hierarchy. We
demonstrated how the ontology can be applied to the context of Web services in a Service
Oriented Architecture to describe security capabilities and requirements. A matchmaking
algorithm was presented to perform requirement-capability matchmaking that takes into
account not just the concepts, but also the properties of the concept. This is important because
security annotations make extensive use of property attributes. The ability to take them into
account makes this matching algorithm much more refined than previous work.

The creation of these ontologies is an iterative process. Additional instances and properties
will always be needed to express new security statements. Classes and properties may be
added and deleted as the security community continues to evaluate and refine the security
ontologies. Additional ontologies are still needed to address issues such as privacy policies,
access control, survivability, and QoS. We hope this work will serve as a catalyst in the
development of standardized security-related ontologies with contributions from both the
security community and the semantic Web community.

17

References

1. IA Architecture and Technical Framework (2004). Executive Summary of the End-to-
End IA Component of the GIG Integrated Architecture, National Security Agency
Information Assurance Directorate.

2. Denker, G., Kagal, L., Finin, T., Paolucci, M., and Sycara, K. (2003). Security for
DAML Web Services: Annotation and Matchmaking. In Proc. of the 2nd International
Semantic Web Conference (ISWC2003): Sanibel Island, Florida.

3. Denker, G., Nguyen, S., and Ton, A. (2004). OWL-S Semantics of Security Web
Services: a Case Study. In Ist European Semantic Web Symposium: Heraklion,
Greece.

4. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., and Sycara, K. (2004).
Authorization and Privacy for Semantic Web Services. In AAAI Spring Symposium,
Workshop on Semantic Web Services: Stanford, California.

5. W3C (2001). DAML+OIL (March 2001) Reference Description,
http://www.w3.org/TR/daml+oil-reference.

6. W3C (2004). OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-
features/.

7. IETF and W3C Working Group (2001). XML Encryption,
http://www.w3c.org/Encryption/2001.

8. IETF and W3C Working Group (2003). XML Signature,
http://www.w3c.org/Signature.

9. OASIS SSTC (2005). Security Assertion Markup Language (SAML) 2.0 Technical
Overview, Working Draft, http://www.oasis-
open.org/committees/download.php/12938/sstc-saml-tech-overview-2.0-draft-06.pdf.

10. Noy, N.F., and McGuinness, D.L. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology, Stanford Knowledge Systems Laboratory, KSL-01-05.

11. W3C Recommendation (2004). OWL Web Ontology Language Guide, vol. 2005,
W3C.

12. DAML Ontology Library. http://www.daml.org/ontologies/.

13. Schneier, B. (1996). Applied Cryptography, 2nd Edition (New York: John Wiley and
Sons, Inc.).

14, Ferraiolo, D.F., Kuhn, D.R., and Chandramouli, R. (2003). Role-Based Access
Control (Norwood, MA: Artech House).

15. Committee on National Security Systems (2003). National Information Assurance
(IA) Glossary. pp. 85, http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf: Ft. Meade,
MD.

16. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and
Sycara, K. (2003). OWL-S: Semantic Markup for Web Services,
http://www.daml.org/services/owl-s/1.1/overview/.

17.

Jaeger, M., and Tang, S. (2004). Ranked Matching for Service Descriptions using

DAML-S. In Enterprise Modelling and Ontologies for Interoperability (EMOI),
INTEROP 2004: Riga, Latvia.

18

18.

19.

| Srinivasan, N., Paolucci, M., and Sycara, K. (2004). Adding OWL-S to UDDI,

Implementation and Throughput. In First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004): San Diego, California.
Gill, T. (2000). Metadata and the World Wide Web. In Introduction to Metadata:
Pathways to Digital Information, 2nd Edition Edition, M. Baca, ed. (Los Angeles:
Getty Information Institute).

19

APPENDIX A. Ontology vs. Taxonomy for Security
Annotations

Metadata, literally ‘data about data,” can include the content, context, and structure of the
resource object. This metadata can be described using taxonomy or ontology. Although there
is a tendency to use these two terms interchangeably, there are major differences between
taxonomy and ontology. While a simple taxonomy can provide metadata to markup resources,
taxonomies by themselves are limited in that they only describe and classify resources based
on hierarchical (i.e., subclass) relationships among concepts. Ontology by definition is a
“formal, shared conceptualization of a particular domain of interest” [19]. Ontology can
express the entire knowledge domain, and provide a common vernacular to understand and
express concepts. This knowledge is represented not only by subclass relationships, but also
through properties that further define relationships, restrictions and interdependencies among
concepts. We can provide better decision-ready information and contextual knowledge if we
can mark these resources in such as way. In a sense, we are creating ‘smart’ data and ‘smart’

services with relevant properties that depict complex relationships and assert general facts
about classes and specific facts about individuals.

In addition, ontologies enable class-based reasoning and deduction at the level of detail that
taxonomies cannot provide. Ontologies provide us with the ability to reason about individuals
and enable us to let individuals inherit properties by virtue of being a member of a certain
class. For example, assume we had an ontology that described the type of credential required
to authenticate oneself, and that we could use this ontology with a property called
reqCredential. We can create an ontology rule stating that any resource that has CACcard
(Common Access Card) as a value for the reqCredential property is a DoD resource. Then
when searching for a resource, agents can deduce whether or not a particular resource is
owned by the DoD by examining the value it contains in the reqCredential property.

We want to use ontologies to provide metadata to annotate the security requirements and
capabilities of the requestor and the provider. Even now, with Web browsing, Web servers
have their own security policies, security requirements and capabilities. For example, some
Web sites require logging in or creating an account; others may require the use of SSL for
secure communications; others may disclose personal information to third parties, etc. While
current practices require humans to read the policies to figure out whether these meet our
needs, in a dynamic, distributed environment, we expect our agents to act on our behalf to
decipher and match the security requirements and capabilities of the resource to the requestor.
Moreover, the requestor itself has its own set of security requirements and capabilities that
have to be understood by the resource provider. This can all be realized through the use of
security ontologies that let us express security requirements and capabilities, as well as access
control policies, privacy policies, and QoS issues in a common, formal manner.

Some may argue that a simple taxonomy is sufficient to annotate resources with security-
related information. However, there are cases where the simplicity of a hierarchical
classification is not adequate to represent security-related information. For example, assume
that we have a simple taxonomy such as the one in Figure A.l to represent security

20

mechanisms. If we want to only express strict terms and concepts in our security statements,
the taxonomy in Figure A.l1 would be a sufficient method of doing so (e.g., this resource
requires access control, that resource can provide an X.509 certificate, etc.). However, if we
want to describe detailed concepts or compare security statements, there would not be a way
to do so with the taxonomy. For example, if we wanted to state the following: “This resource
requires authentication via an X.509v3 certificate that is signed specifically by VeriSign
Certificate Authority, and it must still be valid.” Then there is no way to express this using the
strict hierarchical, classification-based notation of taxonomies. As another example, if we had
a taxonomical representation of security algorithms, and wanted to state a capability such as
“This resource has the capability to provide SSH version 3, and supports the AES encryption
algorithm with a key length of 256 bits, and uses the Diffie-Hellman key exchange
algorithm,” it would also not be possible with the simple taxonomy. On the other hand,
ontologies can provide rich, semantic meaning to describe a wide range of security
statements. Additionally, we can specify properties and restrictions on properties that allow us
to indicate restrictions to a particular class or individual of a class using ontologies. For
example, one can state that a username-password pair must contain one and only one
password using ontologies. Others may state that the service only accepts certificates that

were created after a certain date. These things that are not possible to express with a
taxonomy.

Security Mechanism

—Access Control Mechanism

ACL

ACM

Authentication Mechanism

— Certificates

|— X.509 Certificate

Kerberos ticket

— Username password Combo

Figure A.1: Sample Taxonomical Representation of Selected Security Mechanisms

If we were to take the above sample security mechanism taxonomy and expand it into an
ontology, it could be expressed as in Figure A.2 where some possible properties are added to
a particular class, and are inherited by its subclasses and individuals, denoted by italicized
phrases. For simplicity, property types and values are omitted, as they are somewhat self-
explanatory. This is just a slight modification of the taxonomy, without using the full-fledged

21

expressive power of ontologies. Yet, even with the simple modifications of additions of
properties, we can see that it now enables specification of more detailed security-related
information. For example, we can now declare an instance of an X.509 Certificate class that
would inherit all the properties from the X.509 Certificate class and its parent class, enabling
expressions of version info, certificate authority, key value, and certificate owner if necessary.

Hence, it makes sense to use ontology for representing security concepts and annotating
resources. In fact, due to the complex nature and relationships of various security concepts

and the possible attributes they possess, ontologies are very well suited to express the security
domain.

Security Mechanism

— Access Control Mechanism

ACL

L— ACM

Authentication Mechanism

— Certificates Properties: has_key, has_owner, signedby

L X.509 Certificate — Properties: has_version

— Kerberos ticket Properties: has_timestamp

Username password Combo — Properties: has_length, has_validtime

Figure A.2: Sample Ontological Representation with Some Properties Defined

22

APPENDIX B. Competency Questions for the Ontology

The competency questions devised to determine the scope of the ontology are stated as
security requirements and capabilities for both the resource requestor and the provider.

B.1. Requestor-side security statements

A requestor may want have various security requirements it needs to be met and state its own
capabilities that it possesses when searching for a resource.

Requirements
Requestors need the ability to specify the security features they desire from a provider.
Possible types of security requirements could be:
1. Requirements specific to the exchange of data
a. Resources must allow any inputs and outputs (all as a group or individually) to
be encrypted, signed or protected in some manner with a specific algorithm or
protocol
b. Resources need to assure that sensitive (e.g., personal) data should be handled
in an acceptable manner, according to a specific (privacy) policy or agreed
upon way.
2. Requirements specific to security features
a. Resources must posses specific security mechanism or can do a certain
protocol, along with details such as particular algorithm or other properties
b. Resources must meet certain security objectives (e.g., confidentiality,
authentication)
3. Requirements specific to accessing the resource
a. Resources can only belong to a specific entity (e.g., business or organization or
individual or even country) and proof of ownership (i.e., what credentials are
required) should be presented
b. Resources can only come from entities that have a certain level of assurance or
trust (i.e. rating method that shows level of trust other users or a trusted third
party has assigned to it)

Capabilities
The requestor may also need to communicate what it security capablhtles it possesses so that
the provider allows access to the requestor, including:

1. Capabilities specific to the credentials it is capable of handling

a. Resources can present credentials (of a given type) to the provider for
authentication purposes

b. Resources can obtain credentials if necessary from a third party
2. Capability regarding security features
a. Resources can use security components such as security mechanisms, and

security protocols that meet certain security objectives and have a given
assurance level

b. Resources can adhere to a specific security policy

23

B.2. Provider-side Security Statements

A resource provider may want to state the following security requirements and its capabilities
of its resource. The types of statements made from the provider side would be mirror images

of the requestor. Specifically, requestor-side capability statements would mirror provider-side
requirements and visa versa.

Requirements
From the service perspective, security requirements are similar to the concept of policy. In
this regards, providers want to express things like:
1. Requirements specific to authentication and access control
a. Resources require only certain types of users (based on the credential they
possess or association they belong to or even the location they are coming
from) to access the service

b. Resources require specific types of credentials from the requestor to access the
resource

2. Requirements specific to the types of security features the requestor should possess

a. Resources expect the requestor to be capable of certain security mechanisms or
security protocols with various levels of detail

Capabilities
Provider capabilities are things that the resource provider can do for the requestor. Examples
include:
1. Capabilities specific to the exchange of data
a. Resources securely transmit input/output parameters (i.e. uses encryption or
signing)
b. Resources securely store data after it has been used
2. Capabilities specific to the security features that the provider possesses

a. Resources can be used with given security mechanisms and protocols in
various levels of detail

b. Resources can support various security objectives
3. Capabilities specific to providing the resource

a. Resources originate from given entity or location and this can be proven using
given mechanism or credential

b. Resources are rated or certified at given assurance level via specific

organization with specified rating and this can be proven using certain
credential

24

APPENDIX C. Graphical Representation of Security
Ontologies

To aid in understanding the ontologies including the classes, properties and relationships, we
provided a graphical representation of the set of NRL ontologies. In these diagrams and in the
OWL files, we tried to maintain consistency in naming conventions for classes, properties and
instances. The conventions we used are described briefly.

Classes are depicted as singular nouns or phrases and begin with an upper case letter. When a
class is a combination of two words, such as SecurityProtocol, it is written as one word, but
the beginning of each individual word is capitalized.

Properties begin with lowercase letters and are singular. They can be nouns or verbs. If the
property name is more than one word, the rest of the words begin with capital letters, for
example, hasAssurance and isGovernmentStandard.

Individuals also start with uppercase letters. In most cases, we follow the generally agreed
upon notation of the instance to represent it. For example, IPSec is generally spelled with I, P
and S in uppercase form, so we follow the notation when declaring IPSec as an instance.
XML-enc is usually hyphenated, so we follow that form as well. For cases where an instance
is two or more words, they are written as one word, such as CACCard.

File names start with lowercase letters. In the case the file names are combinations of several
words, the first letter of every word except the first word is capitalized. For example,
securityAssurance.owl, and injObj.owl.

Trying to capture the complex relationships of the ontologies in a graphical form and still
maintain readability required some brevity. Some of the notations we used to depict the
ontology are:

1. Classes are represented as (light blue) circles. Class names begin with uppercase
letters.

2. Properties are represented as (blue) italicized and bold font. Property names always
begin with lowercase letters. Properties whose ranges are not specified are data type
properties meaning that their range can be literals (string, Boolean, integer, etc). For
lack of space, the actual values of these data type properties were omitted, but can be
seen in the OWL representations given in Appendix B.

3. Instances are represented in normal font, and begin with uppercase letters. They are
connected to classes via a solid line, as opposed to properties which are connected to
their respective classes via a dotted line.

25

C.1. NRL Security Main Ontology; securityMain.owl

Our Main Security ontology was too big to fit in one picture, so the ‘SecurityProtocol’
subclass is actually depicted by itself, even though it is a part of the main ontology.

7 supportsSecurityObjective
; Range:SecurityObjective class (multiple)

SecurityObjective SecurityConcept
Restriction Class

{supportsSecurityObjective

- Confidentiality = “Authorization”}
- Availability
L UserAuthentication SecurityProtocol SecurityMechanis
|- MessageAuthentication ': :
~ Authorization a Zaafrgzs"gggﬁsrityAssurance- —hasAssurance

M Intearit i Assura.mce ’ Range: &SecurityAssurance; RBAC
I- Messagelntegrity :
- KeyManagement I~ hasAigorithn Assurance

Y 4 i Range: &SecurityAlgorithms;

- Trust ' Algorithm
- HostTrust “— reqCredential
| ReplayPrevention Range: &Credentials;SimpleCredential
I CovertChannelPrevention
- Separation -
t TrafficHiding ServiceMechanis 22#;,"‘:“

Anonymity

SoapFirewall

ClarkWilson
MLSPump

OnionRouter

ChineseWall

Security Main Ontology continued

— hasAssurance
i Range: &SecurityAssurance; Assurance
i— hasAlgorithm

i Range: &SecurityAlgorithms; Algorithm
— reqCredential

i\ Range: &Credentials;SimpleCredential

SecurityProtocol
RestrictionClass RestrictionClass RestrictionClass
{supportsSecurityObjfective {supportsSecurityObjective {supportsSecurityObjective
= MessageAuthentication} = UserAuthentication} = Confidentiality}

A

SignatureProtocol

uthenticationProtocoD (NetSecurityProtocol

EncryptionProtocol > (KeyMgmtProtocol

XML-Dsig Kerberos IPSec : XML-Enc
H SAML SSH : XKMS
i Login_Protocol TLS (sameAs: SSL) :
— hasSignatureAlgorithm SSL N hasEncryptionAlgorithm
(Range: &SecuirtyAlgorithms; (Range: &SecuirtyAlgorithms;
SignatureAlgorithms) EncryptionAlgorithms)

26

C.2. NRL Credentials Ontology; credentials.owl

i~ withCredential (minCardinality=2)

MultifactorCredentia Credential
I

~ expDate

PhysicalToken

ElectronicToken BiometricToken

CACCard
Certlflcate - @ ryptographicKe
~ name :
= mmLength - value atAddress
- path
CRBACCertificate> X < X509Certificate > [PAddress igitalSignatura
; - version
“—role '—serlaINumber
~ issuer
~ notBefore
- notAfter

27

C.3. NRL Security Algorithms Ontology: securityAlgorithms.owl!

— IsNISTStandard

Algorithm

ChecksumAlgorithm

CRC-8
CRC-16
CRC-32

KeyExchangeAlgorithm

Oakley
Diffie_Hellman
KEA

EncryptionAlgorithm

SignatureAlgorithm

hasNSALevel —
modeofOperation —
keyLength —i

SymmetricAlgorithm (

AsymmetricAlgorithm

ashAlgorithiy MACAIgorith

~ DES (keylength = 64)

RSA SHA-1 HMAC
B SHA-256 CBC-MAC
AES ECC
- Blowfish RIPEMD
MD4
- TripleDES (hasNSALevel = &assurance;type3) MD5
- CAST

|- Skipjack (hasNSALevel = &assurance;typeZ)
CRAYON (hasNSALevel = &assurance;type1)

28

C.4. NRL Security Assurance Ontology: securityAssurance.owl

— byOrganization (Range:string)

FIPS140-2 (comment:
FIPS46-3 Orange Book)

FIPS180-2

CommonCriteria

29

C.5. DAML infObj Ontology Modified; infObj.owl

— baseObject (range: &Thing)

— cryptoAlgUsed (range: &SecurityAlgorithms;algorithm)

InformationObject

C.6. DAML Service Security Ontology Modified; serviceSecurity.owl!

— serviceParameter (range: ServiceParameter)

- securityRequirement (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)
~ securityCapability (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

&profile;Profile

[l
]
'
[l
]
]
[}
¥
i
[l
[l

&profile:ServiceParameter

| |
SecurityMain;SecurityConce @Main;Security@

C.7. DAML Agent Security Ontology Modified; agentSecurity.owl

~ securityRequirement (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)
— securityCapability (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

30

APPENDIX D. OWL Representations of the NRL Security
Ontology

D.1. Main Security Ontology (securityMain.owl)

<?xml version="1.0"?>

<!DOCTYPE uridef [

<!ENTITY rdf . "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#">
<IENTITY owl *http://www.w3.0rg/2002/07/owl#">
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema# ">
<1ENTITY credentials "file://C:\NRLOntologyFiles\credentials.owl#">
<!ENTITY algorithms "file://C:\NRLOntologyFiles\securityAlgorithms.owl#">
<!1ENTITY assurance "file://C:\NRLOntologyFiles\securityAssurance.owl#">
<!ENTITY security "file://C:\NRLOntologyFiles\securityMain.owl#">
1>
<xrdf :RDF

xmlns ="&security;"

xmlns:security ="&security;"

xml :base ="&security;"

xmlns:rdf ="&rdf; "

xmlns:rdfs ="&rdfs; "

xmlns:owl ="&owl; "

xmlns:xsd ="&xsd; "

xmlns:credentials ="&credentials;"

xmlns:algorithms ="&algorithms;"

xmlns:assurance ="&assurance; "

>

<owl:Ontology>
<rdfs:comment>
A security ontology to annotate resources with security-related information
</rdfs:comment>
</owl:0Ontology>

<l-- Top Level Classes; SecurityObjective and SecurityConcept -->
<owl:Class rdf:ID="SecurityObjective"/>

<owl:Class rdf:ID="SecurityConcept"/>

<l—=

Second Tier classes, subclasses of SecurityConcept:

SecurityProtocol, SecurityMechansism, SecurityPolicy
-——>

<owl:Class rdf:ID="SecurityProtocol">
<rdfs:subClassOf rdf:resource="#SecurityConcept"/>
</owl:Class>

<owl:Class rdf:ID="SecurityMechanism">
<rdfs:subClassOf rdf:resource="#SecurityConcept"/>
</owl:Class>

<owl:Class rdf:ID="SecurityPolicy">
<rdfs:subClassOf rdf:resource="#SecurityConcept"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="supportsSecurityObjectives"/>
<owl:hasValue rdf:resource="Authorization"/>
</owl:Restriction>
</rdfs:subClassOf>

31

</owl:Class>

<l-=
Subclasses of SecurityProtocol class, including

SignatureProtocol, AuthenticationProtocol, NetworkSecurityProtocol,

EncryptionProtocol, and KeyMgmtProtocol

_—

<owl:Class rdf:ID="AuthenticationProtocol">

<rdfs:subClassOf rdf:resource="#SecurityProtocol"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#supportsSecurityObjectives"/>

<owl:hasValue rdf:resource="#UserAuthentication"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="KeyManagementProtocol">

<rdfs:subClassOf rdf:resource="#SecurityProtocol"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#supportsSecurityObjectives"/>
<owl:hasValue rdf:resource="#KeyManagement"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="EncryptionProtocol">

<rdfs:subClassOf rdf:resource="#SecurityProtocol"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#supportsSecurityObjectives"/>
<owl:hasValue rdf:resource="#Confidentiality"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="SignatureProtocol">
<rdfs:subClassOf rdf:resource="#SecurityProtocol"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#supportsSecurityObjectives"/>

<owl:hasValue rdf:resource="#MessageAuthentication"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="NetworkSecurityProtocol">

<rdfs:subClassOf rdf:resource="#SecurityProtocol"/>
</owl:Class>

<!--

Subclasses of SecurityMechanism class; Service, Host, Network,
-——>

<owl:Class rdf:ID="ServiceMechanism">

<rdfs:subClassOf rdf:resource="#SecurityMechanism"/>
</owl:Class>

<owl:Class rdf:ID="HostMechanism">

<rdfs:subClassOf rdf:resource="#SecurityMechanism"/>
</owl:Class>

<owl:Class rdf:ID="NetworkMechanism"'>

<rdfs:subClassOf rdf:resource="#SecurityMechanism"/>
</owl:Class>

<owl:Class rdf:ID="ApplicationMechanism">

<rdfs:subClassOf rdf:resource="#SecurityMechanism"/>
</owl:Class>

32

Application

<l--

Subclasses of SecurityPolicy class; Commercial, Military
_ .

<owl:Class rdf:ID="CommercialPolicy">
<rdfs:subClassOf rdf:resource="#SecurityPolicy"/>
</owl:Class>

<owl:Class rdf:ID="MilitaryPolicy">
<rdfs:subClassOf rdf:resource="#SecurityPolicy"/>
</owl:Class>

<l=--
Property Definitions: SecurityConcept class
-

<owl :ObjectProperty rdf:ID='"gupportsSecurityObjectives">
<rdfs:domain rdf:resource="#SecurityConcept"/>
<rdfs:range rdf:resource="#SecurityObjective"/>
<rdfs:comment>
Any SecurityConcept can support one or more of the Security Objectives defined
in the SecurityObjective class
</rdfs:comment>
</owl:0bjectProperty>

<l--

Property Definitions: SecurityProtocol class

-2

<owl:0bjectProperty rdf:ID="hasAlgorithm">
<rdfs:domain rdf:resource="#SecurityProtocol"/>
<rdfs:range rdf:resource="&algorithms;Algorithm"/>

</owl:0ObjectProperty>

<owl :0bjectProperty rdf:ID="hasAssurance">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection®>
<owl:Class rdf:about="#SecurityProtocol"/>
<owl:Class rdf:about="#SecurityMechanism"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range rdf:resource="&assurance;Assurance"/>
</owl:0ObjectProperty>

<owl :0ObjectProperty rdf:ID="reqCredential">
<rdfs:domain rdf:resource="#SecurityProtocol"/>
<rdfs:range rdf:resource="&credentials;Credential"/>
</owl:0ObjectProperty>

<l--

Property Definitions: SecurityMechanism class

-——>

<!-- Property is hasAssurance, which is already declared above -->
<l--

Property Definitions: SignatureProtocol class

-

<owl:0bjectProperty rdf:ID="hasSignatureAlgorithm">
<rdfs:subPropertyOf rdf:resource="#hasAlgorithm"/>
<rdfs:range rdf:resource="&algorithms;SignatureAlgorithm"/>
</owl:0ObjectProperty>

<=

Property Definitions: EncryptionProtocol class

-—>

<owl:ObjectProperty rdf:ID="hasEncryptionAlgorithm">
<rdfs:subPropertyOf rdf:resource="#hasAlgorithm"/>
<rdfs:range rdf:resource="&algorithms;EncryptionAlgorithm"/>

</owl:ObjectProperty>

<l--

33

Instance declarations for SecurityObjective class
——>

<SecurityObjective rdf:ID="Confidentiality">
<rdfs:comment>
Protects against information being disclosed or revealed to unauthorized
parties.
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="Availability">
<rdfs:comment>
Provides guarantee that resource is available to authorized users at any
authorized time.
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="UserAuthentication">
<rdfs:comment>
Provides assurance of the identity of a person or entity.
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="MessageAuthentication">
<rdfs:comment>

Provides guarantee that message came from whoever claimed to have sent it.
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="Authorization">
<rdfs:comment>

Only authorized entities are allowed to access resources in an authorized
manner.

(Aka Access Control). If desired, user may create instance of AccessControl as
well.
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="MessageIntegrity">
<rdfs:comment>
Data integrity or Message integrity; data cannot be changed, deleted,
modified, etc by unauthorized parties.
</xrdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="KeyManagement">
<rdfs:comment>
(SecondaryObjective)
</rdfs:comment>
</SecurityObjective>

Securely manages keys for legitimate users.

<SecurityObjective rdf:ID="ReplayPrevention">
<rdfs:comment>
(Secondary Objective) Protect against replay attacks
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="Trust">
<rdfs:comment>

(Secondary Objective) How to trust entity. Trust not only of identification,
but statements, claims, etc.

</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="HostTrust">
<rdfs:comment>

(Secondary Objective) How to trust host or platform. Is relevant to Common
criteria, etc.

</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="CovertChannelPrevention">

34

<rdfs:comment>
(Secondary Objective) Prevent or limit the existance of covert channels
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="Separation">
<rdfs:comment>
(Secondary Objective)
</rdfs:comment>
</SecurityObjective>

<SecurityObjective rdf:ID="TrafficHiding">
<rdfs:comment>
(Secondary Objective) Pad traffic with bogus data to hide traffic patterns
</rdfs:comment:>
</SecurityObjective>

<SecurityObjective rdf:ID="Anonymity">
<rdfs:comment>
(Secondary Objective) Provides anonymity
</rdfs:comment>
</SecurityObjective>

<l--

Instance declarations for AuthenticationProtocol class
——>

<AuthenticationProtocol rdf:ID="Kerberos"/>

<AuthenticationProtocol rdf:ID="SAML"/>

<AuthenticationProtocol rdf:ID="Login_Protocol"/>

<l--

Instance declarations for SignatureProtocol class
-2

<SignatureProtocol rdf:ID="XML-dsig"/>

<l--

Instance declarations for EncryptionProtocol class
-—>

<EncryptionProtocol rdf:ID="XML-enc"/>

<y--

Instance declarations for KeyManagementProtocol class
—_——>

<KeyManagementProtocol rdf:ID="XKMS"/>

<y--

Instance declarations for NetworkSecurityProtocol class

—_—>

<NetworkSecurityProtocol rdf:ID="SSH">
<gupportsSecurityObjectives rdf:resource="#Integrity"/>
<supportsSecurityObjectives rdf:resource="#Confidentiality"/>
<gupportsSecurityObjectives rdf:resource="#UserAuthentication"/>
<supportsSecurityObjectives rdf:resource="#MessageAuthentication"/>

</NetworkSecurityProtocol>

<NetworkSecurityProtocol rdf:ID="IPSec">
<supportsSecurityObjectives rdf:resource="#MessageAuthentication"/>
<supportsSecurityObjectives rdf:resource="#Integrity"/>
<supportsSecurityObjectives rdf:resource="#Confidentiality"/>
</NetworkSecurityProtocol>

<NetworkSecurityProtocol rdf:ID="SSL">
<owl:sameAs rdf:resource="#TLS"/> .
<gupportsSecurityObjectives rdf:resource="#Confidentiality"/>
<supportsSecurityObjectives rdf:resource="#UserAuthentication"/>
</NetworkSecurityProtocol>

<NetworkSecurityProtocol rdf:ID="TLS">
<owl:sameAs rdf:resource="#SSL"/>

35

<supportsSecurityObjectives rdf:resource="#UserAuthentication"/>
<supportsSecurityObjectives rdf:resource="#Confidentiality*/>

</NetworkSecurityProtocol>
<!--

Instance declarations for SecurityMechanism:ServiceMechanism class
—-——>

<ServiceMechanism rdf:ID="SocapFirewall">
<supportsSecurityObjectives rdf:resource="#Authorization"/>

</ServiceMechanism>

<l--

Instance declarations for SecurityMechanism:HostMechanism class
-

<HostMechanism rdf:ID="Safehost">

<supportsSecurityObjectives rdf:resource="#HostTrust"/>
</HostMechanism>

<HostMechanism rdf:ID="VMM">

<supportsSecurityObjectives rdf:resource="#HostTrust"/>
</HostMechanism>

<=

Instance declarations for SecurityMechanism:NetworkMechanism class
——>

<NetworkMechanism rdf:ID="VPN">

<supportsSecurityObjectives rdf:resource="#Confidentiality"/>

<supportsSecurityObjectives rdf:resource="#Separation"/>
</NetworkMechanism>

<NetworkMechanism rdf:ID="MLS_Pump">

<supportsSecurityObjectives rdf:resource="#CovertChannelPrevention®/>
</NetworkMechanism>

<NetworkMechanism rdf:ID="OnionRouter">
<supportsSecurityObjectives rdf:resource="#Anonymity"/>

<supportsSecurityObjectives rdf:resource="#Confidentiality"/>
</NetworkMechanism>

<l--

Instance declarations for SecurityPolicy class
-

<SecurityPolicy rdf:ID="RBAC">
<rdfs:comment>

Role-based Access Control
</rdfs:comment>
</SecurityPolicy>

<t--

Instance declarations for SecurityPolicy:Commercial class
-——>

<CommercialPolicy rdf:ID="ClarkWilson"/>

<CommercialPolicy rdf:ID="ChineseWall"/>
<!--

Instance declarations for SecurityPolicy:Military class
-
<MilitaryPolicy rdf:ID="BLP">
<rdfs:comment>
Bell La-Padula
</rdfs:comment>
</MilitaryPolicy>

</rdf :RDF>

36

D.2. Credentials Ontology (credentials.owl)

<?xml version="1.0"?>
< !DOCTYPE uridef|[

<1ENTITY rdf *http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#">
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#">
< !ENTITY xsd "http://www.w3.0org/2001/XMLSchema#*>
<!ENTITY credentials "file://C:\NRLOntologyFiles\credentials.owl#">
<!ENTITY algorithms “file://C:\NRLOntologyFiles\securityAlgorithms.owl#">
<!ENTITY assurance "file://C:\NRLOntologyFiles\securityAssurance.owl#">
<1ENTITY security "file://C:\NRLOntologyFiles\securityMain.owl#">

1>

<rdf:RDF

xmlns ="gcredentials;"

xmlns:credentials ="&credentials;"

xml:base ="&credentials;"

xmlns:rdf ="&rdf;"

xmlns:xdfs ="&rdfs;"

xmlng:owl ="&owl; "

xmlns:xsd ="&xsd; "

xmlns:security ="security;"
xmlns:algorithms "Salgorithms; "
xmlns:assurance "&assurance; "

>

<owl:Ontology>
<rdfs:comment>
A credential ontology to describe authentication credentials.
</rdfs:comment>
</owl:Ontology>

<!-- Top Level Class; Credential Class
-—>

<owl:Class xdf:ID="Credential"/>

<f--

Subclasses of Credential: PhysicalToken class, ElectronicToken class,
BiometricToken class
-—>

<owl:Class rdf:ID="PhysicalToken">
<rdfs:subClassOf rdf:resource="#Credential"/>
</owl:Class>

<owl:Class rdf:ID="ElectronicToken">
<rdfs:subClassOf rdf:resource="#Credential"/>
</owl:Class>

<owl:Class rdf:ID="BiometricToken">
<rdfs:subClassOf rdf:resource="#Credential"/>
</owl:Class>

<l--
Subclass definitions of the PhysicalToken class

Most of these subclasses are taken from the SRI Credential ontology
—_——>

<owl:Class rdf:ID="Badge">
<rdfs:subClassOf rdf:resource="#PhysicalToken"/>
<rdfs:comment>such as a police badge</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="DebitCard">

<rdfs:subClassOf rdf:resource="#PhysicalToken"/>
</owl:Class>

37

<owl:Class rdf:ID="CreditCard">

<rdfs:subClassOf rdf:resource="#PhysicalToken"/>
</owl:Class>

<owl:Class rdf:ID="SmartCard">

<rdfs:subClassOf rdf:resource="#PhysicalToken"/>
</owl:Class>

<owl:Class rdf:ID="Passport">

<rdfs:subClassOf rdf:resource="#PhysicalToken"/>
</owl:Class>

<owl:Class rdf:ID="DriversLicense">

<rdfs:subClassOf rdf:resource="#PhysicalToken"/>
</owl:Class>

<owl:Class rdf:ID="MilitaryID">

<rdfs:subClassOf rdf:resource="#PhysicalToken"/>
</owl:Class>

<!--

Subclass defintions of the ElectronicToken class
——>

<owl:Class rdf:ID="Address">

<rdfs:subClassOf rdf:resource="#ElectronicToken"/>
</owl:Class>

<owl:Class rdf:ID="Password">

<rdfs:subClassOf rdf:resource="#ElectronicToken"/>
</owl:Class>

<owl:Class rdf:ID="OneTimePassword">

<rdfs:subClassOf rdf:resource="#ElectronicToken"/>
</owl:Class>

<owl:Class rdf:id="Certificate">

<rdfs:subClassOf rdf:resource="#ElectronicToken"/>
</owl:Class>

<owl:Class rdf:ID="Cookie">

<rdfs:subClassOf rdf:resource="#ElectronicToken"/>
</owl:Class>

<owl:Class rdf:ID="CryptographicKey">

<rdfs:subClassOf rdf:resource="#ElectronicToken'/>
</owl:Class>

<!--

Subclasg defintions of the BiometricToken class; Voice and Fingerprint classes
——>

<owl:Class rdf:ID="Voice">

<rdfs:subClassOf rdf:resource="#BiometricToken"/>
</owl:Class>

<owl:Class rdf:ID="Fingerprint">

<rdfs:subClassOf rdf:resource="#BiometricToken"/>
</owl:Class>

<l--

Subclass definitions of the Address Class;
——>

IPAddress and Domain
<owl:Class rdf:ID="IPAddress">

<rdfs:subClassOf rdf:resource="#Address"/>
</owl:Clags>

<owl:Class rdf:ID="Domain">

<rdfs:subClassOf rdf:resource="#Address"/>
</owl:Class>

38

<l-—-

Subclass definitions of the Certificate class
—-—>

<owl:Class rdf:ID="X.509Certificate">
<rdfs:subClagsOf rdf:resource="#Certificate"/>
</owl:Class>

<owl:Class rdf:ID="RBACCertificate">
<rdfs:subClassOf rdf:resource="#Certificate"/>
</owl:Class>

<t--

Subclass Definitions of CryptographicKey class; DigitalSignature and PrivateKey
classes

-——>

<owl:Class rdf:ID="DigitalSignature">
<rdfs:subClassOf rdf:resource="#CryptographicKey"/>
</owl:Class>

<owl:Class rdf:ID="PrivateKey">
<rdfs:subClassOf rdf:resource="#CryptographicKey"/>
</owl:Class>

<!--
MultifactorCredential is a Separate class to describe n-factor authentication;
where n different credentials are required
(e.g. two factor authentication with smart card and PIN)
Types of credentials are defined through a property, "withCredential".
Because it is multifactor, it requires at least two types of credentials
enforced thru the minCardinality property
——>
<owl:Class rdf:ID="MultifactorCredential'>
<rdfs:subClassOf>
<owl:Restriction>
<owl :onProperty rdf:resource="#withCredential"/>
<owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">2</owl:minCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<!l--
Property Definitions
——>

<l-- Property Definition for PhysicalToken clags -->
<owl:DatatypeProperty rdf:ID="expDate">
<rdfs:domain rdf:resource="#PhysicalToken"/>
<rdfs:range rdf:resource="&xsd;dateTime"/>
</owl:DatatypeProperty>

<!-- Property Definition for Password class -->

<owl:DatatypeProperty rdf:ID="minLength">
<rdfs:domain rdf:resource="#Pagssword"/>
<rdfs:range rdf:resource="&xsd;int"/>

</owl :DatatypeProperty>

<!-- Property Definition for Cookie class.

These follow SRI ontology's properties for its cookie class
——>

<owl :DatatypeProperty rdf:ID="path">
<rdfs:domain rdf:resource="#Cookie"/>
<rdfs:range rdf:resource="&xsd;anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="value">
<rdfs:range rdf:resource="&xsd;string"/>
<rdfs:domain rdf:resource="#Cookie"/>

</owl:DatatypeProperty>

39

<owl:DatatypeProperty rdf:ID="name">
<rdfs:range rdf:resource="&xsd;string"/>
<rdfs:domain rdf:resource="#Cookie"/>

</owl:DatatypeProperty>

<1-- Property Definition for Address class -->

<owl:DatatypeProperty rdf:ID="atAddress">
<rdfs:domain rdf:resource="#Address"/>
<rdfs:range xrdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-~ Property Definition for RBAC Certificate class -->
<owl:DatatypeProperty rdf:ID="role">
<rdfs:domain rdf:resource="#RBACCertificate"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<l-- Property Definitions for X.509Certificate class

This includes version, serialNumber,

issuer, notBefore and notAfter
-

<owl:DatatypeProperty rdf:ID="version">
<rdfs:domain rdf:resource="#X.509Certificate"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="serialNumber">
<rdfs:domain rdf:resource="#X.509Certificate"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="issuer">
<rdfs:domain rdf:resource="#X.509Certificate"/>
<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:comment>this is the certificate authority</rdfs:comment>
</owl:DatatypeProperty>

<owl :DatatypeProperty rdf:ID="notBefore">
<rdfs:domain rdf:resource="#X.509Certificate"/>
<rdfs:range rdf:resource="&xsd;dateTime"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="notAfter">
<rdfs:domain rdf:resource="#X.509Certificate"/>
<rdfs:range rdf:resource="&xsd;dateTime"/>
</owl:DatatypeProperty>

<!-- Property definition for the MultifactorCredential class -->
<owl:0ObjectProperty rdf:ID="withCredential">»
<rdfs:domain rdf:resource="#MultifactorCredential®/>
<rdfs:range rdf:resource=*#Credential*/>
</owl:0ObjectProperty>

<l--

Instances
-—>

<MilitaryID rdf:ID="CaCCard"/>

</rdf :RDF>

40

D.3. Security Algorithms Ontology (securityAlgorithms.owl)

<?xml version="1.0"?>

<IDOCTYPE uridef(
<!ENTITY rdf
<!IENTITY rdfs
<!ENTITY owl
<!ENTITY xsd
<IENTITY security
<!1ENTITY algorithms
<!ENTITY assurance
1>

<rdf:RDF
xmlns
xmlns:algorithms
xm] :base
xmlns:rdf
xmlns:rdfs
xmlns:owl
xmins:xsd
xmlns:security
xmlns:assurance

<owl:Ontology>
<rdfs:comment>
An ontology to
</rdfs:comment>
</owl:Ontology>

<!--

"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
"http://www.w3.0rg/2000/01/rdf-schema#">
"http://www.w3.0xrg/2002/07/owl#">
"http://www.w3.0rg/2001/XMLSchema#">
*file://C:\NRLOntologyFiles\securityMain.owl#">
"file://C:\NRLOntologyFiles\securityAlgorithms.owl#">
"file://C:\NRLOntologyFiles\securityAssurance.owl#">

"galgorithms; "
"salgorithms; "
"&algorithms; "
="grdf;"
="&rdfs; "
*&owl; "

" &Xsd; "
"gsecurity; "
="&assurance; "

describe varioug cryptographic algorithms

Top Class Definition: Algorithm

-—>

<owl:Class rdf:ID="Algorithm">

<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#isNISTStandard"/>
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativelnteger">1l</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<l--

Subclass definitions of Algorithm Class; KeyExchangeAlgorithm, Encryption
Algorithmg, SignatureAlgorithm, and ChecksumAlgorithm

-——>

<owl:Class rdf:ID="KeyExchangeAlgorithm">
<rdfs:subClassOf rdf:resource="#Algorithm"/>

</owl:Class>

<owl:Class rdf:ID="EncryptionAlgorithm">
<rdfs:subClassOf rdf:resource="#Algorithm"/>

</owl:Class>

<owl:Class rdf:ID="SignatureAlgorithm">
<rdfs:subClassOf rdf:resource="#Algorithm"/>

41

</owl:Class>

<owl:Class rdf:ID="ChecksumAlgorithm">

<rdfs:subClassOf rdf:resource="#Algorithm"/>
</owl:Class>

<!--

Subclasses of Encryption Algorithm: SymmetricAlgorithm and AsymmetricAlgorithm
-

<owl:Class rdf:ID="SymmetricAlgorithm">

<rdfs:subClassOf rdf:resource="#EncryptionAlgorithm"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="hasNSALevel"/>
<owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl :maxCardinality>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="AsymmetricAlgorithm">

<rdfs:subClassOf rdf:resource="#Encryptiondlgorithm"/>
</owl:Class>

<!--

Subclasses of SignatureAlgorithm class: HashAlgorithm and MACAlgorithm
——>

<owl:Class rdf:ID="HashAlgorithm">
<rdfs:subClassOf rdf:resource="#SignatureAlgorithm"/>
<rdfs:comment>
Key dependent function; useful in providing user authentication without a
secret key
</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="MACAlgorithm">

<rdfs:subClassOf rdf:resource="#SignatureAlgorithm"/>
</owl:Class>

<!-- Property Definitions -->
<!-- Property Definition for the Algorithm Class -->

<owl:DatatypeProperty rdf:ID="isNISTStandard">
<rdfs:domain rdf:resource="#Algorithm"/>
<rdfs:range rdf:resource="&xsd;boolean"/>
<rdfs:comment>NIST FIPS Standard</rdfs:comment>
</owl:DatatypeProperty>

<!-~ Property Defintions for the SymmetricAlgorithm class -->

<owl:DatatypeProperty rdf:ID="keyLength">
<rdfs:domain rdf:resource="#SymmetricAlgorithm"/>

<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="modeOfOperation">
<rdfs:domain rdf:resource="#SymmetricAlgorithm"/>
<rdfs:range rdf:resource="&xsd;string"/>
<rdfs:comment>Can be CBC, ECB, OFB, CFB,

or Counter</rdfs:comment>
</owl:DatatypeProperty>

42

<owl:0ObjectProperty rdf:id="hasNSALevel">
<rdfs:domain rdf:resource="#SymmetricAlgorithm"/>
<rdfs:range rdf:resource="&assurance;NSA"/>

<rdfs:comment>These can be Typel, Type 2, Type3, or Typed</rdfs:comment>
</owl:0bjectProperty>

<!-- Instances -->

<KeyExchangeAlgorithm rdf:ID="Diffie_Hellman"/>
<KeyExchangeAlgorithm rdf:ID="KEA"/>
<KeyExchangeAlgorithm rdf:ID="Oakley"/>

<Checksumalgorithm rdf:ID="CRC-8"/>
<Checksumdlgorithm rdf:ID="CRC-16"/>
<ChecksumAlgorithm rdf:ID="CRC-32"/>

<SymmetricAlgorithm rdf:ID="AES">
<hasNSALevel rdf:resource="&assurance;Type3"/>
</SymmetricAlgorithm>

<!-~ Instances for the SymmetricAlgorithm class -->
<SymmetricAlgorithm rdf:ID="RC4"/>

<SymmetricAlgorithm rdf:ID="Skipjack">
<hasNSALevel rdf:resource="&assurance; Type2"/>
</SymmetricAlgorithm>

<SymmetricAlgorithm rdf:ID="CRAYON">
<hasNSALevel rdf:resource="&assurance; Typel"/>
</SymmetricAlgorithm>

<SymmetricAlgorithm rdf:ID="TripleDES"/>
<hasNSALevel rdf:resource="&assurance;Type3"/>
<SymmetricAlgorithm rdf:ID="Blowfish"/>

<SymmetricAlgorithm rdf:ID="DES">
<keyLength rdf:datatype="&xsd;int">64</keyLength>
<hasNSALevel rdf:resource="&assurance;Type3"/>
<rdfs:comment>Refers only to single DES</rdfs:comment>
</SymmetricAlgorithm>

<SymmetricAlgorithm rdf:ID="CAST"/>

<AsymmetricAlgorithm rdf:ID="RSA"/>
<AsymmetricAlgorithm rdf:ID="ECC">

<rdfs:comment>Elliptic Curve Crypto</rdfs:comment>
</AgsymmetricAlgorithm>

<HashAlgorithm rdf:ID="RIPE-MD"/>

<HashAlgorithm rdf:ID="SHA-1"/>

<HashAlgorithm rdf:ID="SHA-256">
<rdfs:comment>usually used with AES</rdfs:comment>

</HashAlgorithm>

<HashAlgorithm rdf:ID="MD5"/>

<HashAlgorithm rdf:ID="MD4"/>

<MACAlgorithm rdf:ID="HMAC"/>
<MACAlgorithm rdf:ID="CBC-MAC"/>

</rdf :RDF>

43

D.4. Security Assurance Ontology (securityAssurance.owl)

<?xml versi

<!DOCTYPE u

on="1.0"?>

ridef]|

<!ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
<1ENTITY security *file://C:\NRLOntologyFiles\securityMain.owl#">
<!ENTITY assurance "file://C:\NRLOntologyFiles\securityAssurance.owl#">
1>
<rdf :RDF
xmlns ="gassurance;"
xmlns:assurance ="&assurance;"
xml:base ="&assurance;"
xmlns:rdf ="&rdf;"
xmlns:rdfs ="grdfs;"
xmlns:owl ="gowl; "
xmlns:xsd ="&xsd; "
xmlns:security ="&security;"
>

<owl:Ontology>
<rdfs:comment>

A security ontology to annotate resources with security-related assurance

information
</rdfs:comment>
</owl:Ontology>

<!-- Top Class; Assurance -->

<owl:Class rdf:ID=*Assurance"/>

<l--

Subclasses of Assurance:
-—>

Standard, Accreditation,
<owl:Class rdf:ID="Standard">

<rdfs:subClassOf rdf:resource="#Assurance"/>
</owl:Class>

<owl:Class rdf:ID="Accreditation">

<rdfs:subClassOf rdf:resource="#Assurance"/>
</owl:Class>

<owl:Class rdf:ID="Evaluation">

<rdfs:subClassOf rdf:resource="#Assurance'/>
</owl:Class>

<owl:Class rdf:ID="Certification">

<rdfs:subClassOf rdf:resource="#Assurance"/>
</owl:Class>

<!-- Subclass of Standard class: FIPS -->

<owl:Class rdf:ID="FIPS">

<rdfs:subClassOf rdf:resource="#Standard"/>
</owl:Class>

Evaluation, Certification

<owl:Class rdf:ID="NSA">
<rdfs:subClassOf rdf:resource="#Standard"/>
</owl:Class>

<!-- Subclass of Evaluation class: TCSEC and CommonCriteria -->

<owl:Class rdf:ID="TCSEC">
<rdfs:subClassOf rdf:resource="#Evaluation"/>
<rdfs:comment>Orange Book</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="CommonCriteria">
<rdfs:subClassOf rdf:resource="#Evaluation"/>
</owl:Class>

<!-- Subclass of Certification class: DITSCAP class -->

<owl:Class rdf:ID="DITSCAP">
<rdfs:subClassOf rdf:resource="#Certification"/>
</owl:Class>

<!--

Subclass of TCSEC class; DivisionA, DivisionB, DivisionC, and DivisionD
——>

<owl:Class rdf:ID="DivisionA">
<rdfs:subClassOf rdf:resource="#TCSEC"/>
</owl:Class>

<owl:Class rdf:ID="DivisionB">
<rdfs:subClassOf rdf:about="#TCSEC"/>
</owl:Class>

<owl:Class rdf:ID="DivisionC">
<rdfs:subClassOf rdf:about="#TCSEC"/>
</owl:Class> .

<owl:Class rdf:ID="DivisionD">
<rdfs:subClassOf rdf:resource="#TCSEC"/>
</owl:Class>

<!-- Property Declarations -->

<owl:DatatypeProperty rdf:ID="byOrganization">

<rdfs:domain rdf:resource="#Assurance"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:comment>Specifies which organization is responsible</rdfs:comment>
</owl:DatatypeProperty>

<!-- Instance declarations -->
<!-- FIPS instances -->

<FIPS rdf:ID="FIPS140-2"/>
<FIPS rdf:ID="FIPS180-2"/>
<FIPS rdf:ID="FIPS46-3"/>

<!-- NSA instances -->

<NSA rdf:ID="Typel"/>

<NSA rdf:ID="Type2"/>

<NSA rdf:ID="Type3"/>
<NSA rdfLID="Typed"/>

45

<!-- Division instances -->
<DivisionA rdf:ID="Al"/>
<DivisionB rdf:ID="B1"/>
<DivisionB rdf:ID="B2"/>
<DivisionB rdf:ID="B3"/>
<DivisionC rdf:ID="C1l"/>
<DivisionC rdf:ID="C2"/>

<!{-- CommonCriteria instances -->

<CommonCriteria rdf:ID="EALl"/>
<CommonCriteria rdf:ID="EAL2"/>
<CommonCriteria rdf:ID="EAL3"/>
<CommonCriteria rdf:ID="EALA"/>
<CommonCriteria rdf:ID="EALS"/>
<CommonCriteria rdf:ID="EAL6"/>
<CommonCriteria rdf:ID="EAL7"/>

</rdf :RDF>

D.5. Information Object Ontology (infObj.owl)

<!DOCTYPE uridef |

<1ENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema#">
<!ENTITY owl "http://www.w3.0rg/2002/07/owl#">
<!ENTITY xsd "http://www.w3.0xrg/2001/XMLSchema#">
<!ENTITY algorithms "file://C:\NRLOntologyFiles\securityAlgorithms.owl#">
<!ENTITY infObj "file://C:\NRLOntologyFiles\infObj.owl#">
1>
<rdf :RDF
xmlns ="&infObj;"
xmlns:infoObj ="&infObj; "
xmlns:base ="&infObj;"
xmlns:xrdf ="&xdf;"
xmlns:rdfs ="&rdfs;"
xmlns:owl ="&owl;"
xmlns:xsd ="&xsd; "
xmlns:algorithms ="&algorithms;"

>

<owl:Ontology>
<rdfs:comment>
Ontology to describe security requirements for inputs and outputs of
services. Security requirements are encrypting, signing of data, etc.
</rdfs:comment>
</owl:0Ontology>

<1-- Class declarations -->
<owl:Class rdf:ID="InformationObject"/>

<owl:Class rdf:ID="EncInfObj">
<rdfs:subClassOf rdf:resource="#InformationObject"/>
</owl:Class>

<owl:Class rdf:ID="SigInfObj">
<rdfs:subClassOf rdf:resource="#InformationObject"/>
</owl:Class>

<!-- PROPERTIES -->

<owl:0bjectProperty rdf:ID="baseObject">
<rdfs:comment>
Describes the type or structure of the information
that is encoded in InformationObject
</rdfs:comment>
<rdfs:range rdf:resource="&xsd;Thing"/>
<rdf:type rdf:resource="&xsd;FunctionalProperty"/>
<rdfs:domain rdf:resource="#InformationObject"/>
</owl:ObjectProperty>

<owl :ObjectProperty rdf:ID="cryptoAlgUsed">
<rdfs:domain rdf:resource="#InformationObject"/>
<rdfs:range rdf:resource="&algorithms;Algorithm"/>
</owl:ObjectProperty>

</xrdf :RDF>

47

D.6. Service Security Ontology (serviceSecurity.owl)

<?xml version="1.0"?>

<!1DOCTYPE uridef(
< IENTITY rdf
<!ENTITY rdfs
<!ENTITY owl
<1ENTITY profile
<IENTITY xsd
<!ENTITY serviceSecurity

"file://C:\NRLOntologyFiles\securitySecurity.owl#">
<1ENTITY security *file://C:\NRLOntologyFiles\securityMain.owl#">

"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
"http://www.w3.0rg/2000/01/rdf-schema#">

"http://www.w3.0rg/2002/07/owl#">
*http://www.daml .org/services/owl-s/1.1/Profile.owl#">

"http://www.w3.0rg/2001/XMLSchema#">

1>

<xdf:RDF
xmlns ="&serviceSecurity;"
xmlns:serviceSecurity ="&serviceSecurity;"
xml :base ="§&serviceSecurity;"
xmlng:rdf ="&rdf; "
xmlns:rdfs ="&rdfs;"
xmlns:owl ="&owl; "
xmlnsg:profile ="gprofile;"
xmlns:xsd ="&xsd; "
xmlns:security ="&security;"

>

<owl:Ontology>
<rdfs:comment>
An ontology to annotate OWL-S descriptions with security capabilities
and security requirements of the resource or service.
</rdfs:comment>
</owl:Ontology>

<1-- Class Definitions -->
<l--
Security Concept and Security Objective are made a subclass of

ServiceParameter, so that we can define capability and requirement as
a subPropertyOf serviceParameter
-——>

<owl:Class rdf:about="&security;SecurityConcept">

<rdfs:subClassOf rdf:resource="&profile;ServiceParameter"/>
</owl:Class>

<owl:Class rdf:about="&security;SecurityObjective">

<rdfs:subClassOf rdf:resource="&profile;ServiceParameter"/>
</owl:Class>

<!--
A ParamValues class that includes both the SecurityConcept class and
the SecurityObjective class.
This ParamValue class is used to define the range of values the two

properties, securityCapability and securityRequirement can possess.
-——>

<owl:Class rdf:ID="ParamValues'>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="&security;SecurityConcept"/>

<owl:Class rdf:about="&security;SecurityObjective"/>
</owl:unionOf>

</owl:Class>

48

<!-- Properties -->

<owl:ObjectProperty rdf:ID="securityCapability">
<rdfs:subPropertyOf rdf:resource="&profile;serviceParameter"/>
</owl:0ObjectProperty>

<owl:0bjectProperty rdf:ID="securityRequirement">
<rdfs:subPropertyOf rdf:resource="&profile;serviceParameter"/>
</owl:0bjectProperty>

<!-- Property Restrictions -->
<b—-

These restrictions enable the properties to be either a concept or objective -
-——>

<owl:Restriction>

<owl :onProperty rdf:resource="#SecurityCapability"/>
<owl:allValuesFrom rdf:resource="#Paramvalues"/>
</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="#SecurityRequirement"/>
<owl:allvaluesFrom rdf:resource="#ParamValues"/>
</owl:Restriction>

</rdf :RDF>

49

D.7. Agent Security Ontology (agentSecurity.owl)

<IDOCTYPE uridef|
<!ENTITY rdf
<!ENTITY rdfs
<!ENTITY owl
<!ENTITY xsd
<!ENTITY profile
<!ENTITY agentSecurity
<!ENTITY security
1>

"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
"http://www.w3.0rg/2000/01/rdf-schema#">
"http://www.w3.0rg/2002/07/owl#">
"http://www.w3.0org/2001/XMLSchema#">
"http://www.daml.org/services/owl-s/1.1/Profile.owl#">
"file://C:\NRLOntologyFiles\agentSecurity.owl#">
*file://C:\NRLOntologyFiles\securityMain.owl#">

<rdf :RDF

xmlns ="gagentSecurity;"
xmlns:agentSecurity ="&agentSecurity;"
xmlns:base

="&agentSecurity;"
xmlns:rdf ="&rdf; "
xmlns:rdfs ="grdfg;"
xmlns:owl ="&owl;"
xmlns:xsd ="&xsd;"
xmlns:profile ="&profile;"
xmlns:security ="g&security;"

>

<owl :Ontology>
<rdfs:comment>

An ontology to enable specification of agent
security requirements and capabilities
</rdfs:comment>
</owl:Ontology>

(requestor-side)

<!-- Class Description -->

<owl:Class rdf:ID="Agent"/>

<!l--
A ParamValues class that includes both the SecurityConcept class and
the SecurityObjective class.
This ParamValue class is used to define the range of values the two
properties,

securityCapability and securityRequirement can possess.
-—

<owl:Class rdf:ID="ParamValues">
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="&security;SecurityConcept"/>

<owl:Class rdf:about="&security;SecurityObjective"/>
</owl:unionOf>

</owl:Class>

<l-~- Properties -->

<owl:ObjectProperty rdf:ID="securityCapability">
<rdfs:domain rdf:resource="#Agent"/>

</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="securityRequirement">
<rdfs:domain rdf:resource="#Agent"/>
</owl:0bjectProperty>

<!-- Property Restrictions -->
<!~- Thege restrictions enable the properties to be either a concept or

50

objective -->

<owl:Restriction>
<owl:onProperty rdf:resource="#SecurityCapability"/>
<owl:allvValuesFrom rdf:resource="#ParamvValues"/>
</owl:Restriction>

<owl:Restriction>
<owl:onProperty rdf:resource="#SecurityRequirement"/>
<owl:allvaluesFrom rdf:resource="#ParamValues"/>
</owl:Restriction>

</rdf :RDF>

51

